Step of Proof: all_quot_elim
12,41
postcript
pdf
Inference at
*
1
2
I
of proof for Lemma
all
quot
elim
:
1.
T
: Type
2.
E
:
T
T
3. EquivRel(
T
;
x
,
y
.
E
(
x
,
y
))
4.
F
: (
x
,
y
:
T
//(
E
(
x
,
y
)))
5.
w
:(
x
,
y
:
T
//(
E
(
x
,
y
))). SqStable(
F
(
w
))
6.
z
:
T
.
F
(
z
)
7.
z
:
x
,
y
:
T
//(
E
(
x
,
y
))
F
(
z
)
latex
by ((((Unfold `sq_stable` 5)
CollapseTHEN (BackThruHyp 5))
)
CollapseTHENA (
C
(Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 4:n)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
5.
w
:(
x
,
y
:
T
//(
E
(
x
,
y
))). (
(
F
(
w
)))
(
F
(
w
))
C1:
6.
z
:
T
.
F
(
z
)
C1:
7.
z
:
x
,
y
:
T
//(
E
(
x
,
y
))
C1:
(
F
(
z
))
C
.
Definitions
t
T
,
P
Q
,
SqStable(
P
)
,
x
:
A
.
B
(
x
)
origin